Macrosupramolecular Assemblies


George R. Newkome

Departments of Polymer Sciences and Chemistry

University of Akron

Akron, OH 44325-4717

The formation of bis-terpyridine monomers has facilitated the generation of predictable supramacromolecular oligomers and the related self-assembled oligomeric metallomacrocycles, which have been shown to be capable of forming specific higher order architectures. Standard chemical transformations are described that lead to the synthesis of the requisite monomers for the incorporation of desired bond angle necessary to generate diverse polygons. Although over 20 metals have been incorporated into complexes possessing <tpy-metal-tpy> connectivity, traditionally it has been those utilizing Ru, Os, and/or Fe that has been the preferred mode of supramolecular coordination. Thus, corresponding specifically ordered mixed metal constructs will be considered.2 The introduction of the novel properties associated with weaker coordination, however, needs to be considered and if possible, capitalized on in order to probe the structural stability when multiple <tpy-metal-tpy> connectivity is utilized.1

Avenues leading to higher ordered fractal motifs will be demonstrated along with their potential to self-assemble to larger macromolecular constructs and assemblies. The utilization of <tpy-metal-tpy> with Zn II and Cd II complexes will be shown to afford novel higher ordered fractal arrays3 as well as generating convenient routes to new "filled-in" fractal patterns4,5 and polyfunctionalized composites.6-9 The synthetic aspects, structural characterization at the bulk and molecular level,10 and photophysical properties will be presented.




(1) Schubert, U. S.; Hofmeier, H.; Newkome, G. R. Modern Terpyridine Chemistry; Wiley-VCH: Weinheim, 2006 and Schubert, U.S.; Winter, A.; Newkome, G. R. Terpyridine-based Materials - For Catalytic, Optoelectronic, and Life Science Applications ; Wiley-VCH: Weinheim, 2011.

(2) Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Cush, R.; Russo, P. S.; Godínez, L. A.; Saunders, M. J.; Mohapatra, P. Chem. Eur. J. 2002, 8, 2946.

(3) Newkome, G. R.; Wang, P.; Moorefield, C. N.; Cho, T. J.; Mohapatra, P.; Li, S.; Hwang, S.-H.; Lukoyanova, O.; Echegoyen, L.; Palagallo, J. A.; Iancu, V.; Hla, S.-W. Science 2006, 312, 1782.

(4) Wang, J.-L.; Li, X.; Lu, X.; Chan, Y.-T.; Moorefield, C. D.; Wesdemiotis, C.; Newkome, G. R. Chem. Eur. J., 2011, 17, 4830-4838.

(5) Wang, J.-L.; Li, X.; Lu, X.; Hsieh, I.-F.; Cao, Y.; Moorefield, C. D.; Wesdemiotis, C.; Cheng, S. Z. D.; Newkome, G. R. J. Am. Chem. Soc., 2011, 133, 11450-11451.

(6) Chan, Y.-T.; Li, X.; Soler, M.; Wang, J.-L.; Wesdemiotis, C.; Newkome, G. R. J. Am. Chem. Soc.2009, 131, 16395.

(7) Chan, Y.-T.; Moorefield, C. N.; Soler, M.; Newkome, G. R. Chem. Eur. J. 2009, 16, 1768.

(8) Chan, Y.-T.; Moorefield, C. N.; Newkome, G. R. Chem. Commun. 2009, 6928.

(9) Chan, Y.-T.; Li, S.; Moorefield, C. N.; Wang, P.; Shreiner, C. D.; Newkome, G. R. Chem. Eur. J. 2010, 16, 4164.

(10) Li, X.; Chan, Y.-T.; Newkome, G. R.; Wesdemiotis, C. Anal. Chem., 2011, 83, 1284-1290.